Customizing line appearance
In this lesson, you will learn how to change the appearance of the plot lines.
Let's generate some random data with NumPy and plot it:
import matplotlib.pyplot as plt
import numpy as np
# Generate data
np.random.seed(80)
y = np.cumsum(np.random.randn(100))
plt.plot(y)
plt.show()
Just by default, the figures generated by matplotlib look pretty nice.
Nevertheless, matplotlib offers countless customization options.
Let's take advantage of this and adjust the look of our line:
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(80)
y = np.cumsum(np.random.randn(100))
# customize style of line
plt.plot(y, linestyle='--', color='green', linewidth=1.5)
plt.show()
Here, we have changed the style, color, and width of the line.
The linestyle
argument accepts specific values, which can either be symbols or descriptive names of the style:
# solid line
'-' or 'solid'
# dashed line
'--' or 'dashed'
# dotted line
':' or 'dotted'
# dash-dot line
'-.' or 'dashdot'
# no line
'' or 'none'
Instead of specifying linestyle
as an argument, you can also simply type ls
. For instance:
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(80)
y = np.cumsum(np.random.randn(100))
# customize style of line
plt.plot(y, ls='-.')
plt.show()
You can even hightlight individual data points with markers using the marker
argument:
import matplotlib.pyplot as plt
import numpy as np
np.random.seed(80)
y = np.cumsum(np.random.randn(100))
# customize style of line
plt.plot(y, marker='.')
plt.show()
There are various possible markers that you can add.
Here are some of the most common ones:
'.' # point marker (small dot)
'o' # circle marker
's' # square marker
'*' # star marker
'+' # plus marker
'x' # X marker
Great! Now you know many ways to adjust the appearance of the line.